Skip to main content

Pressure Relief Valves with Diesel Engines



Photo of Circulation Relief Valve
Circulation Relief Valve
When is a pressure relief valve (PRV) required on a fire pump system?  For a standard 175 PSI rated system, the simple answer is check and make sure that your expected churn pressure plus maximum static suction pressure will not exceed 144.6 PSI (or 206.6 PSI for a 250 PSI rated system).  The sizing of the relief valve comes from NFPA 20 (2010 edition) table 5.25(a) which is summarized in our fire pump sizing app.  For those of you that like to know the details read on.

First let's clarify that we are taking about a main pressure relief valve and not a circulation relief valve.  A circulation relief valve is generally 3/4-inch in size if less than 3,000 gpm and intended to provide a little fresh water into the pump casing for cooling purposes.

photo of main pressure relief valve for fire pumps
Pressure Relief Valve
When we say pressure relief valve in "fire pump" terminology, we are referencing a PRV that is only provided on diesel fire pumps to accommodate possible engine over-speed conditions.  The regulators on diesel engines are good, but not perfect.  When the load on the diesel engine changes,there is a natural delay in response and overshoot while the engine tries to maintain speed.  Our goal is prevent the system from exceeding maximum rated system-pressures when this slight change in RPM occurs.  By code diesel fire pumps have a kill switch should the RPM exceed ten-percent of the design speed.  In practice, we have rarely seen a well maintained engine exceed 1.5% of the required speed when adjusting for loads.

So how does this 10% maximum permitted over-speed RPM relate to the output pressure?  The speed (RPM) of a fire pump and the pressure developed do not increase linearly.  That is if you double the RPM you do not double the pressure.  When you double the speed you actually get four times the pressure.  The formula is written as follows:

Pump Speed vs. Pressure Affinity Formula
Pump Speed vs. Pressure Affinity Formula - Rearranged

If we square the 10% increase in speed, we get a 21% increase in pressure as shown below.  If we take 144.6 psi * 121%, we get 175 PSI.  In practice, we do not recommend running your system this close to the rated system pressure unless you know there will never be any change to your suction pressure (i.e. a vertical turbine fire pump).  For diesel fire pumps we recommend that you call and talk to one of our sales engineers.
The NFPA 20 fire pump committee did this exact same exercise and came up with the following language for the code:
NFPA 20 – 2010 Edition
4.18.1* General.
4.18.1.1 Where a diesel engine fire pump is installed and where a total of 121 percent of the net rated shutoff (churn) pressure plus the maximum static suction pressure, adjusted for elevation, exceeds the pressure for which the system components are rated, a pressure relief valve shall be installed.

FM Global Standard 3-7 (Fire Protection Pumps – May 2010)
2.3.3 Pressure Relief Valves

2.3.3.4 Provided a main relief valve on all diesel engine-driven fire pumps when 121% of the net rated shutoff (churn) pressure plus the maximum pump static suction pressure exceeds any system component rated pressure.
FYI - Remember that utilizing a Pressure Relief Valve to reduce discharge pressures is not permitted by NFPA 20 section 4.7.7.2. Designing system to discharge large amounts of water every time it runs is not considered good design practice and code recognizes this fact.

Popular posts from this blog

Installation of Diesel Fuel Tanks for Fire Pumps

After you have determined the size of fuel tank you need for a diesel fire pump, what are the general requirements for installation?  Assuming that you are under under the International Building/Fire Codes, you would go through the following chain of code references: IFC (2009 edition) 3401.2 Nonapplicability. This chapter shall not apply to liquids as otherwise provided in other laws or regulations or chapters of this code, including: ... (3) Storage and use of fuel oil in tanks and containers connected to oil-burning equipment. Such storage and use shall be in accordance with Section 603 . For abandonment of fuel oil tanks, this chapter applies. IFC (2009 edition) 603.1 Installation. The installation of nonportable fuel gas appliances and systems shall comply the International Fuel Gas Code. The installation of all other fuel-fired appliances,  other than internal combustion engines , oil lamps and portable devices such as blow torches, melting pots and weed burners, shall compl

Diesel Exhaust Requirements

The exhaust from a diesel engine driving a fire pump is an often-overlooked item.  The high heat put out by the exhaust is a hazard to occupants and can greatly contribute to overheating the room itself. NFPA 20 (2013 edition), section 11.5 covers "Engine Exhaust" and should be carefully reviewed. However as a starting point, the following items should be considered. Exhaust Discharge Location The first step is to determine where you are going to discharge the exhaust gases. NFPA 20 section 11.5.3 for "exhaust discharge location" has the generic common-sense requirements of do not discharge where you might hurt people, damage the building, or directed on combustible materials. But very little specific requirements are provided. There is a loose reference in NFPA 20 back to NFPA 37 ( Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines ). In addition, the International Mechanical Code (IMC) section 915.1 directs us back to NFPA 3

Fire Pump Rating (Size) Selection

Fire pump sizing is not like commercial pump sizing. We don't care about efficiency, and you order pumps in only specific sizes. This article touches upon some items to consider when picking a fire pump. In general, the first step is determining your system demand point. Discussion of how exactly you determine this is beyond the scope of this article and has a lot of nuance depending upon your site-specific needs. However, for simplicity let's assume that you have a dry-system in an attic with a demand point of 305 gpm (2535 sq ft x 0.10 gpm/sq ft x 1.20 overflow/imbalance factor). Rated Flow (gpm) Sizing The first item you must specify is the pump flow rate. Per NFPA 20 (2013 edition) table 4.8.2 pumps are only allowed to be listed with the following flow rates in gpm: 25, 50, 100, 150, 200, 250, 300, 400, 450, 500, 750, 1000, 1250, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 So with our example demand of 305 gpm, would you go with a 300 or 400 gpm rated fire pump?