Skip to main content

Antifreeze Prohibited for Dwelling units


The NFPA committee made a decision and antifreeze for dwelling units is prohibited.

SUMMARY ACTION: The Standards Council voted to issue TIAs 1000, 995 and 994 on NFPA 13, NFPA 13R and NFPA 13D, respectively, which, for new installations, prohibit the use of antifreeze solutions within all NFPA 13D applications and within the dwelling unit portions of NFPA 13 and NFPA 13R sprinkler systems. In addition, the Council directed that the responsible technical committees conduct further activities as set forth in the decision.

More information on the NFPA web site at http://www.nfpa.org/antifreeze

View the Phase II report here RFAntifreezeSprinklerSystemPh2.pdf

Popular posts from this blog

Installation of Diesel Fuel Tanks for Fire Pumps

After you have determined the size of fuel tank you need for a diesel fire pump, what are the general requirements for installation?  Assuming that you are under under the International Building/Fire Codes, you would go through the following chain of code references: IFC (2009 edition) 3401.2 Nonapplicability. This chapter shall not apply to liquids as otherwise provided in other laws or regulations or chapters of this code, including: ... (3) Storage and use of fuel oil in tanks and containers connected to oil-burning equipment. Such storage and use shall be in accordance with Section 603 . For abandonment of fuel oil tanks, this chapter applies. IFC (2009 edition) 603.1 Installation. The installation of nonportable fuel gas appliances and systems shall comply the International Fuel Gas Code. The installation of all other fuel-fired appliances,  other than internal combustion engines , oil lamps and portable devices such as blow torches, melting pots and weed burners, shall compl

Diesel Exhaust Requirements

The exhaust from a diesel engine driving a fire pump is an often-overlooked item.  The high heat put out by the exhaust is a hazard to occupants and can greatly contribute to overheating the room itself. NFPA 20 (2013 edition), section 11.5 covers "Engine Exhaust" and should be carefully reviewed. However as a starting point, the following items should be considered. Exhaust Discharge Location The first step is to determine where you are going to discharge the exhaust gases. NFPA 20 section 11.5.3 for "exhaust discharge location" has the generic common-sense requirements of do not discharge where you might hurt people, damage the building, or directed on combustible materials. But very little specific requirements are provided. There is a loose reference in NFPA 20 back to NFPA 37 ( Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines ). In addition, the International Mechanical Code (IMC) section 915.1 directs us back to NFPA 3

Fire Pump Rating (Size) Selection

Fire pump sizing is not like commercial pump sizing. We don't care about efficiency, and you order pumps in only specific sizes. This article touches upon some items to consider when picking a fire pump. In general, the first step is determining your system demand point. Discussion of how exactly you determine this is beyond the scope of this article and has a lot of nuance depending upon your site-specific needs. However, for simplicity let's assume that you have a dry-system in an attic with a demand point of 305 gpm (2535 sq ft x 0.10 gpm/sq ft x 1.20 overflow/imbalance factor). Rated Flow (gpm) Sizing The first item you must specify is the pump flow rate. Per NFPA 20 (2013 edition) table 4.8.2 pumps are only allowed to be listed with the following flow rates in gpm: 25, 50, 100, 150, 200, 250, 300, 400, 450, 500, 750, 1000, 1250, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 So with our example demand of 305 gpm, would you go with a 300 or 400 gpm rated fire pump?